Disease-Modifying Immunotherapies for Autoimmune and Allergic diseases
Apitope is developing highly specific disease-modifying immunotherapies to treat life threatening autoimmune diseases

- Abnormal immune response can cause chronic and life threatening conditions e.g. MS, Graves’ disease, uveitis, type 1 diabetes, IBD
- Current therapies do not reinstate tolerance and instead treat symptoms or globally suppress immune system with potential for side effects including increased risk of infections and cancer/immune diseases
- Ideal therapeutic:
 - will re-instate normal immune balance / tolerance
 - avoid global immune suppression
 - treat the underlying cause of the disease
Senior management & leadership

Dr Keith Martin
Chief Executive Officer
KetoCytonyx Inc., BTG plc., BASF Pharma (Knoll)/Boots Pharmaceuticals
Bath University, Nottingham University; Princeton University

2 products to market
(Meridia in US. Zoleptil in UK)
10 candidates into clinical development

Dr Lotta Jansson
Research Director
Astra Zeneca
Uppsala & Lund universities

Dr Hayley French
Commercial Director
General Counsel
Novartis,
CAMR, UCL Ventures
City law firms

Luc Lammens
Finance & HR Director
Movetis (IPO of 100M€)
Janssen Pharmaceutica et al.

Prof David Wraith
CSO, Founder, Chair Scientific Advisory Board, Consultant
Professor, University of Bristol
Medical Research Council @ Mill Hill, London Stanford University; Cambridge University
>130 peer reviewed papers

Dr Christina Carnegie MB BS FPPM
Chief Medical Officer; Consultant
ImmunoScience Inc, Recro Pharma, Auxilium Pharmaceuticals Inc
Medical Director Abbott UK
King’s College Hospital Medical School
9 clinical development programmes licensed
Apitope presents significant investment opportunity

- **Established leader in discovery and development of antigen specific immunotherapeutic peptides, Apitopes®, focused on autoimmune disease**
 - Apitopes® = Antigen Processing Independent epiTOPES
 - located in Belgium and UK
 - experienced management team with strong scientific and commercial track record

- **Proprietary Apitope® discovery platform delivers therapies into development across a broad range of high value autoimmune disorders**
 - very high selectivity in modifying only the malfunctioning part of immune system
 - minimal side effects due to high specificity
 - safe and well tolerated in clinical trials; no treatment related SAEs to date
 - scalable manufacturing – chemical process, readily synthesized with low cost of goods
 - strong portfolio of IP: Platform to 2022; Peptides composition of matter to 2027 – 2034

- **Extensive clinical and development portfolio of product candidates**
 - 3 in clinical/preclinical development phase in attractive end markets
 - 4 in late discovery phase
 - grant funding for Graves’ disease and uveitis programmes

- **Validation through partners on specific assets:** Merck Serono, FP7

- **Opportunity for significant revenues in ultra orphan indication and targeted clinical programme**
 - Modest funding of Factor VIII programme through development to commercialisation with potential peak sales of $1 billion
Apitope History

<table>
<thead>
<tr>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>Company founded in Bristol</td>
</tr>
<tr>
<td>2002-2006</td>
<td>Angel investor, (£1M) Wyvern & Wellcome Trust (£1M) funding</td>
</tr>
<tr>
<td>2006</td>
<td>Approval for First in Man study of ATX-1467 for MS</td>
</tr>
<tr>
<td>2007</td>
<td>Completed first clinical trial on time and budget</td>
</tr>
<tr>
<td>2008</td>
<td>Series A €10M led by Vesalius Biocapital & LRM; Parent created in Belgium</td>
</tr>
<tr>
<td>2008</td>
<td>Fast Forward (venture arm of US MS Society) commits up to $1M</td>
</tr>
<tr>
<td>2009</td>
<td>Merck Serono Licence Agreement €150M + milestones in addition to industry standard royalties</td>
</tr>
<tr>
<td>2012</td>
<td>IWT (Flemish Govt.) €1.2M grant: Graves’ disease and uveitis discovery</td>
</tr>
<tr>
<td>2013</td>
<td>Positive efficacy data from second ATX-1467 clinical trial in MS reported</td>
</tr>
<tr>
<td>2013</td>
<td>FP7 (European Commission Framework 7) €6M grant: Graves’ disease development</td>
</tr>
<tr>
<td>2014</td>
<td>ATX-1467 Phase II clinical trial initiated by Merck Serono</td>
</tr>
<tr>
<td>2015</td>
<td>Series B financing €12 million led by Wales Life Sciences Fund (Arthurian)</td>
</tr>
</tbody>
</table>
Effective tolerance induction may require high dose of peptide antigen: this can be given safely following dose escalation

Dose escalation results in incremental changes in gene expression

Tolerance correlates with expression of genes related to IL-10 secretion (potential surrogate markers in clinical trials)

Tolerance correlates with expression of negative co-stimulatory molecules (potential surrogate markers in clinical trials)
Potentially self-antigen reactive cells are present in all healthy people. Activity of these T helper (Th) cells is controlled by T regulatory (Treg) cells. The result is an immune system that has a fine balance between potentially dangerous Th cells and the Treg cells that suppress them creating an immunological tolerance towards self or foreign antigens.
Apitopes restore the normal immune balance and modify disease

Protein Processing by Dendritic Cells for Antigen Presentation via MHC II Combined with Danger Signals Leads to Imbalance of Immune System and to Tissue Damage

- **Mature dendritic cell** carries danger signals
- **T helper cell activation**
- **Autoimmune disease affecting brain tissue**
- **Cells capable of causing tissue damage**

Peptide Binding to MHC on Surface of Immature Dendritic Cells for Antigen Presentation via MHC II Increases Treg to Restore Immune Balance and Protects Tissues from Damage

- **Immature dendritic cell**
 - Empty MHC receptors on cell surface
 - No Danger signals
- **T regulatory cell activation**
- **Brain Tissue Protected by Regulatory T Cells**
- **Natural Regulatory (CD25, FoxP3) and Induced Suppressor Cells**
Status of Product Pipeline

<table>
<thead>
<tr>
<th>Project</th>
<th>Indication</th>
<th>Commercialisation</th>
<th>Discovery</th>
<th>Preclinical Development</th>
<th>Phase I FIM/Pop in Patients</th>
<th>Phase II</th>
<th>Market Size US$</th>
<th>Estimated Approval Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATX-MS-1467</td>
<td>Multiple Sclerosis</td>
<td>Merck Serono</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.7 - 13.1B</td>
<td></td>
</tr>
<tr>
<td>ATX-MS2</td>
<td>Multiple Sclerosis</td>
<td>Merck Serono</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATX-MS3</td>
<td>Multiple Sclerosis</td>
<td>Merck Serono</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATX-F8-117</td>
<td>Factor VIII inhibition</td>
<td>Apitope</td>
<td></td>
<td></td>
<td></td>
<td>2016/17</td>
<td>3.7 B</td>
<td>2020</td>
</tr>
<tr>
<td>ATX-GD-59</td>
<td>Hyperthyroidism (Graves’ disease)</td>
<td>SEVENTH FRAMEWORK PROGRAMME</td>
<td></td>
<td></td>
<td></td>
<td>2016/17</td>
<td>640 – 800 M*</td>
<td>2024</td>
</tr>
<tr>
<td>ATX-UV1</td>
<td>Uveitis</td>
<td>Partner TBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100 – 350 M*</td>
<td>2026</td>
</tr>
<tr>
<td>ATX-UV2</td>
<td>Uveitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Apitope funded programmes building value to key inflexion points

*no premium priced products available
ATX-MS-1467 for Multiple Sclerosis

Indication
- Relapsing Multiple Sclerosis
- Synthetic soluble copies of four peptide fragments of human myelin basic protein (MBP), a key antigen for Multiple Sclerosis

Market Opportunity
- Significant unmet needs due to poor efficacy and high side effects

Commercialisation Strategy
- Global partnership with Merck Serono: €150 M + milestones plus royalties
- On market by 2023

Development Status
- Efficacy in MS models and immune system both in vivo & in vitro
- Superior efficacy compared to Copaxone in standard in vivo disease model
- Toxicology: well tolerated in multiple studies
- Phase IA safety trial in secondary progressive MS: safe & well tolerated with preliminary evidence of efficacy
- Phase IB safety trial in relapsing Multiple Sclerosis yielded further promising positive efficacy data: reduction in new lesions in brain measured by MRI
- 49 patients in total treated in UK & Russia with no treatment related SAEs and no side effects identified; main AE was mild not dose related injection site reactions that resolved in 2 hours
- Phase II confirmation study anticipated completed 2015 and Phase II dose ranging expected initiation 2015/6
- All development costs paid by Merck Serono
ATX-MS-1467: superior efficacy to glatiramer acetate (Copaxone) in mouse model of Multiple Sclerosis & similar preliminary efficacy in the clinic

Mean number of new or persisting gadolinium (GD) enhancing lesions in relapsing MS patients:

> significantly reduced by 78% following ATX-MS-1467

> remains suppressed at Week 20

*** P<0.001 vs. Week 0; * P<0.05 vs. Week 0
Patients (n=21) from cohort 1 (ITT) with ID administration
ATX-F8-117 Treatment for Factor VIII Inhibitors

Indication
- Factor VIII – an essential protein in blood clotting used to treat Haemophilia A (HA)
- Factor VIII Inhibitors develop in ~30% of patients and result in poor clotting leading to joint & brain damage, death

Current Treatments
- **Immune Tolerance Induction (ITI)** – very high doses of FVIII (daily or 3x week) by catheter - extremely expensive, unpredictable efficacy and poor tolerability. ITI fails in around 30-40% of treated patients.
- Around 60% of patients in Western world do not receive ITI because of cost.
- High doses of expensive by-passing agents used to control bleeds.
- 141 centres in US and 409 in EU

Market Opportunity
- HA is a significant market of US$3.7 B p.a.
- HA is a genetic disease affecting 1:5,000-10,000 males
- 20,000 severe HA patients in EU and US
- **1,300 severe inhibitor patients treatment in US and 5 major EU markets cost $570 M annually**
- Average annual cost to treat an Inhibitor patient: $572K in US and $292K in EU

Commercialisation Strategy
- Marketed by Apitope
- Approved by 2020

Source: Reportlinker.com; Global Data (2014)
Product

- ATX-F8-117 has been developed to significantly change the morbidity and quality of life of Haemophilia A (HA) patients
- Prophylactic treatment with ATX-F8-117 of patients at risk to develop inhibitors will significantly reduce if not eliminate the need for by-passing agents used to treat FVIII intolerant haemophiliacs with inhibitors

Apitope USP

Compared to standard immune tolerance induction with full-length FVIII concentrates, tolerance induction with ATX-F8-117 is designed to:

- **Be faster in converting sero-positive inhibitor patients into sero-negative ones**
- **Have an improved safety profile due to a catheter-free administration** and therefore a lower risk of bleeding complications and infections
- Suppress inhibitor antibody formation in a highly specific manner
- Be less burdensome for patients and caregivers due to less frequent and intradermal administration
- **Be more cost-effective since it replaces expensive high doses of FVIII and may reduce the need for by-passing agents**

Development Status

- Patents filed for prevention and treatment; **Orphan applications in 2014**
- Preclinical development initiated Q1, 2014
- Aim to obtain **Market Authorisation in first indication** by 2020 and commercialise in EU
ATX-F8-117 prevents anti-FVIII antibody formation by 96% in DR2tg Mice
ATX-F8-117 therapeutic treatment decreases total anti-FVIII IgG plasma levels in DR2tg mice
Clinical Costs and Timelines Summary

<table>
<thead>
<tr>
<th>Event Description</th>
<th>2015</th>
<th>2020</th>
<th>2026</th>
</tr>
</thead>
<tbody>
<tr>
<td>First approval EU – Adult (16+) ITI fails</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• First In Man Protocol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Phase II Protocol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PIII adaptive design Protocol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Marketing Authorisation Application & sales force</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First approval US – Adult (16+) ITI fails</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PIII using doses from Phase II in EU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Marketing Authorisation Application</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU approval 4 – 16 year olds ITI fails</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Phase II dose ranging in paediatrics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PIII using doses from Phase II in EU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Marketing Authorisation Application</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US approval 4 – 16 year olds ITI fails</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PIII using doses from Phase II paediatric dose ranging</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Marketing Authorisation Application</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU approval <4 year olds ITI fails</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PIII using doses TBC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Marketing Authorisation Application</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US approval <4 year olds ITI fails</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PIII using doses TBC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Marketing Authorisation Application</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU/US approval first line therapy in inhibitor patient all ages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• PIII using doses from Phase II in EU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Marketing Authorisation Application</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Costs reflect CRO and patient costs; internal costs are not included.
ATX-GD-459 for Graves’ Disease (hyperthyroidism)

Indication
- Overstimulation of the thyroid gland resulting in over-production of thyroxine hormone and enlargement of gland (goitre)
- 60-90% of Hyperthyroidism caused by Graves Disease

Current Treatments
- No cure for Graves Disease
- Treatments target the underlying symptoms e.g. antithyroid drugs, thyroxine and/or removal of thyroid gland
- Issues: poor efficacy
- Drugs in development – Rituximab, Actemra

Market Opportunity
- 2.6 M (N.America), 2.4 M (Europe) – affects up to 2% of women
- 30-50% Graves opthalmopathy (5% sight loss)
- Paediatric Graves’ Disease affects 6,000 US and 6,000 EU

Commercialisation Strategy
- Partner following completion of First in Man clinical trial in Graves’ disease patients

Development Status
- ATX-GD-459 is in pre-clinical development
- Phase I trial in patients to start early Q1, 2016
- FP7 funded development programme
ATX-GD-459 treatment reduces anti-TSHR antibodies in AdV-TSHR immunised DR3tg mice

ATX-GD-459 dosing

-2 -1 0 1 2 3 4 5

Ad-TSHR Ad-TSHR Termination

W0

PBS, LacZ PBS, TSHR P-ATX459, TSHR

W2

PBS, LacZ PBS, TSHR P-ATX459, TSHR

W5

PBS, LacZ PBS, TSHR P-ATX459, TSHR

ATX-GD-459 dosing results in significant reduction of TSHR antibodies at W5, with 83% and 81% decreases compared to control groups.
ATX-UV1 and ATX-UV2 for Uveitis

| **Indication** | • Autoimmune inflammation of the uvea tract (iris, ciliary body and choroid) in the eye
| | • Several sub-types
| | • Causes 10-15% of blindness |
| **Current Treatments** | • Steroids
| | • Issues: Severe cases not responsive to steroids |
| **Market Opportunity** | • Total uveitis Market Size: Incidence: 500,000 in US and EU
| | • Market value: estimated to be US$1.6 B by 2017 but currently up to US$350 M (limited data)
| | • Bird shot retinopathy is an orphan indication with 5,000 patients; blind within 5 years of diagnosis |
| **Commercialisation Strategy** | • Partner following completion of First in Man clinical trial in uveitis patients |
| **Development Status** | • Antigen target UV1 Epitopes identified: four
| | • Antigen target UV2 Epitopes identified: seven
| | • Product candidate nomination Q1, 2016, clinical trial starts early 2017 |
Consistent pre-clinical data across disease areas: clinical findings positive

<table>
<thead>
<tr>
<th>Programme</th>
<th>Tolerance data – suppression of T cell proliferation</th>
<th>Relevant disease model data</th>
<th>Clinical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple Sclerosis ATX-MS-1467</td>
<td>~60%</td>
<td>>90% inhibition of EAE both prophylactic and therapeutic dosing</td>
<td>78% reduction in new Gd lesions by MRI in Phase I</td>
</tr>
<tr>
<td>FVIII Intolerance ATX-F8-117</td>
<td>~70%</td>
<td>>90% inhibition of neutralising anti-FVIII antibody formation</td>
<td></td>
</tr>
<tr>
<td>Graves’ Disease ATX-GD-459</td>
<td>~65%</td>
<td>86% inhibition of anti-TSHR IgG antibody formation</td>
<td></td>
</tr>
<tr>
<td>Uveitis ATX-UV-xxx</td>
<td>In progress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Q4</td>
<td>H1</td>
<td>H2</td>
<td>H1</td>
</tr>
<tr>
<td></td>
<td>Close Series B financing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Factor VIII:
- Orphan designation (EU)
- Orphan designation (USA)
- CTA for first clinical trial filed
- First patient first visit

Factor VIII:
- Initial clinical data from Phase I on HA patients (Q4)
- Initiate Phase II/III
- Initial Phase II/III data available (H2)
- First Marketing Authorisation Application filed in EU (H2)
- First Marketing Authorisation in EU (H2)

Graves’
- CTA for first clinical trial approved (Q1)
- First patient first visit
- Initial clinical data from Phase I on GD patients
- Partner takes licence
- Partner initiates Phase II

Uveitis:
- Product Candidate designated
- First patient first visit (H1)
- Initial clinical data (H2)
- Partner takes licence

Multiple Sclerosis:
- Initial clinical data in Phase IIA for ATX-1467
Pipeline Products: Current IP Status
To date, the Company has already established 6 distinct patent families with over 100 patents filed around its technology

<table>
<thead>
<tr>
<th>Project</th>
<th>Indication</th>
<th>Commercialisation</th>
<th>Key Patent priority dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATX-1467</td>
<td>Multiple Sclerosis</td>
<td></td>
<td>2002 (granted; includes platform)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2007 (Granted)</td>
</tr>
<tr>
<td>ATX-MS2</td>
<td>Multiple Sclerosis</td>
<td></td>
<td>2012</td>
</tr>
<tr>
<td>ATX-MS3</td>
<td>Multiple Sclerosis</td>
<td></td>
<td>2012</td>
</tr>
<tr>
<td>ATX-F8-117</td>
<td>Factor VIII inhibition</td>
<td></td>
<td>2008 (Granted); 2009; 2012</td>
</tr>
<tr>
<td>ATX-GD-459</td>
<td>Hyperthyroidism</td>
<td></td>
<td>2013 2014</td>
</tr>
<tr>
<td>ATX-UV1</td>
<td>Uveitis</td>
<td>TBC</td>
<td>2016</td>
</tr>
<tr>
<td>ATX-UV2</td>
<td>Uveitis</td>
<td>TBC</td>
<td></td>
</tr>
</tbody>
</table>

Summary

- Apitope is the leader in developing disease-modifying immunotherapies for treating life threatening autoimmune diseases that is differentiated from other players

- Proprietary Apitope® discovery platform applicable to autoimmune (our focus) and allergic disorders (opportunity for broad partnership)

- Strong clinical and development portfolio of product candidates

- Validated with big pharma partners and large grants

- Experienced management team with strong scientific and commercial track record

- **Significant opportunity** - funding through to launch ultra orphan indication with high (£500k to 1,000k) potential sales in relatively short time frame